色噜噜人体337p人体 I 超碰97观看 I 91久久香蕉国产日韩欧美9色 I 色婷婷我要去我去也 I 日本午夜a I 国产av高清怡春院 I 桃色精品 I 91香蕉国产 I 另类小说第一页 I 日操夜夜操 I 久久性色 I 日韩欧在线 I 国产深夜在线观看 I 免费的av I 18在线观看视频 I 他也色在线视频 I 亚洲熟女中文字幕男人总站 I 亚洲国产综合精品中文第一 I 人妻丰满熟av无码区hd I 新黄色网址 I 国产精品真实灌醉女在线播放 I 欧美巨大荫蒂茸毛毛人妖 I 国产一区欧美 I 欧洲亚洲1卡二卡三卡2021 I 国产亚洲欧美在线观看三区 I 97精品无人区乱码在线观看 I 欧美妇人 I 96精品在线视频 I 国产人免费视频在线观看 I 91麻豆国产福利在线观看

初一數學等式的性質試題及答案參考

時間:2023-11-14 11:21:53 劍鋒 試題 我要投稿
  • 相關推薦

初一數學等式的性質試題及答案參考

  在日常學習和工作生活中,只要有考核要求,就會有試題,借助試題可以更好地考查參試者所掌握的知識和技能。一份什么樣的試題才能稱之為好試題呢?下面是小編精心整理的初一數學等式的性質試題及答案參考,歡迎大家分享。

初一數學等式的性質試題及答案參考

  初一數學等式的性質試題及答案參考 1

  1.設a=log54,b=(log53)2,c=log45,則( )

  A、a<c<b B、b<c<a

  C、a<b<c D、b<a<c

  解析:選D。a=log54<1,log53<log54<1,b=(log53)2<log53,c=log45>1,故b<a<c。

  2、已知f(x)=logax-1在(0,1)上遞減,那么f(x)在(1,+∞)上( )

  A、遞增無最大值 B、遞減無最小值

  C、遞增有最大值 D、遞減有最小值

  解析:選A。設y=logau,u=x-1。

  x∈(0,1)時,u=x-1為減函數,∴a>1。

  ∴x∈(1,+∞)時,u=x-1為增函數,無最大值、

  ∴f(x)=loga(x-1)為增函數,無最大值、

  3、已知函數f(x)=ax+logax(a>0且a≠1)在[1,2]上的最大值與最小值之和為loga2+6,則a的值為( )

  A、12 B、14 C、2 D、4

  解析:選C。由題可知函數f(x)=ax+logax在[1,2]上是單調函數,所以其最大值與最小值之和為f(1)+f(2)=a+loga1+a2+loga2=loga2+6,整理可得a2+a-6=0,解得a=2或a=-3(舍去),故a=2。

  4、函數y=log13(-x2+4x+12)的單調遞減區間是________、

  解析:y=log13u,u=-x2+4x+12。

  令u=-x2+4x+12>0,得-2

  ∴x∈(-2,2]時,u=-x2+4x+12為增函數,

  ∴y=log13(-x2+4x+12)為減函數、

  答案:(-2,2]

  1、若loga2<1,則實數a的取值范圍是( )

  A、(1,2) B、(0,1)∪(2,+∞)

  C、(0,1)∪(1,2) D、(0,12)

  解析:選B。當a>1時,loga2<logaa,∴a>2;當0<a<1時,loga2<0成立,故選B。

  2、若loga2

  A、0

  C、a>b>1 D、b>a>1

  解析:選B。∵loga2

  ∴0

  3、已知函數f(x)=2log12x的\值域為[-1,1],則函數f(x)的定義域是( )

  A、[22,2] B、[-1,1]

  C、[12,2] D、(-∞,22]∪[2,+∞)

  解析:選A。函數f(x)=2log12x在(0,+∞)上為減函數,則-1≤2log12x≤1,可得-12≤log12x≤12,X k b 1 。 c o m

  解得22≤x≤2。

  4、若函數f(x)=ax+loga(x+1)在[0,1]上的最大值和最小值之和為a,則a的值為( )

  A、14 B、12

  C、2 D、4

  解析:選B。當a>1時,a+loga2+1=a,loga2=-1,a=12,與a>1矛盾;當0<a<1時,1+a+loga2=a,loga2=-1,a=12。

  5、函數f(x)=loga[(a-1)x+1]在定義域上( )

  A、是增函數 B、是減函數

  C、先增后減 D、先減后增

  解析:選A。當a>1時,y=logat為增函數,t=(a-1)x+1為增函數,∴f(x)=loga[(a-1)x+1]為增函數;當0<a<1時,y=logat為減函數,t=(a-1)x+1為減函數, ∴f(x)=loga[(a-1)x+1]為增函數、

  6、(20××年高考全國卷Ⅱ)設a=lge,b=(lg e)2,c=lg e,則( )

  A、a>b>c B、a>c>b

  C、c>a>b D、c>b>a

  解析:選B。∵10,∴c>b,故選B。

  7、已知0<a<1,0<b<1,如果alogb(x-3)<1,則x的取值范圍是________

  解析:∵0<a<1,alogb(x-3)<1,∴logb(x-3)>0。

  又∵0<b<1,∴0<x-3<1,即3<x<4。

  答案:3<x<4

  8、f(x)=log21+xa-x的圖象關于原點對稱,則實數a的值為________

  解析:由圖象關于原點對稱可知函數為奇函數,

  所以f(-x)+f(x)=0,即

  log21-xa+x+log21+xa-x=0log21-x2a2-x2=0=log21,

  所以1-x2a2-x2=1a=1(負根舍去)、

  答案:1

  9、函數y=logax在[2,+∞)上恒有y>1,則a取值范圍是________

  解析:若a>1,x∈[2,+∞),y=logax≥loga2,即loga2>1,∴1<a<2;若0<a<1,x∈[2,+∞),y=-logax≥-loga2,即-loga2>1,∴a>12,∴12<a<1。

  答案:12<a<1或1<a<2

  10、已知f(x)=6-ax-4ax<1logax x≥1是R上的增函數,求a的取值范圍、

  解:f(x)是R上的增函數,

  則當x≥1時,y=logax是增函數,

  ∴a>1。

  又當x<1時,函數y=(6-a)x-4a是增函數、

  ∴6-a>0,∴a<6。

  又(6-a)×1-4a≤loga1,得a≥65。

  ∴65≤a<6。

  綜上所述,65≤a<6。

  11、解下列不等式、

  (1)log2(2x+3)>log2(5x-6);

  (2)logx12>1。

  解:(1)原不等式等價于2x+3>05x-6>02x+3>5x-6,解得65<x<3,所以原不等式的解集為(65,3)、

  (2)∵logx12>1log212log2x>11+1log2x<0

  log2x+1log2x<0-1<log2x<0

  2-1<x<20x>012<x<1。∴原不等式的解集為(12,1)

  12、函數f(x)=log12(3x2-ax+5)在[-1,+∞)上是減函數,求實數a的取值范圍、

  解:令t=3x2-ax+5,則y=log12t在[-1,+∞)上單調遞減,故t=3x2-ax+5在[-1,+∞)單調遞增,且t>0(即當x=-1時t>0)、因為t=3x2-ax+5的對稱軸為x=a6,所以a6≤-18+a>0a≤-6a>-8-8<a≤-6。

  初一數學等式的性質試題及答案參考 2

  一、選擇:

  1.下列式子可以用“=”連接的是( )

  A.5+4_______12-5 B.7+(-4)______7-(+4)

  C.2+4×(-2)______-12 D.2×(3-4)_____2×3-4

  2.下列等式變形錯誤的是( )

  A.由a=b得a+5=b+5; B.由a=b得;

  C.由x+2=y+2得x=y; D.由-3x=-3y得x=-y

  3.運用等式性質進行的變形,正確的是( )

  A.如果a=b,那么a+c=b-c; B.如果,那么a=b;

  C.如果a=b,那么; D.如果a2=3a,那么a=3

  二、填空:

  4.用適當的數或式子填空,使所得結果仍是等式,并說明是根據等式的哪一條性崐質以及怎樣變形的:

  (1)如果x+8=10,那么x=10+_________; (2)如果4x=3x+7,那么4x-_______=7;

  (3)如果-3x=8,那么x=________; (4)如果x=-2,那么_______=-6.

  5.完成下列解方程:

  (1)3-x=4

  解:兩邊_________,根據________得3-x-3=4_______.

  于是-x=_______.

  兩邊_________,根據_______得x=_________.

  (2)5x-2=3x+4

  解:兩邊_________,根據_______得________=3x+6

  兩邊_________,根據_______得2x=________.

  兩邊_________,根據________得x=________.

  三、解答題:

  6.利用等式的性質解下列方程并檢驗:

  (1)x+3=2 (2)-x-2=3

  (3)9x=8x-6 (4)8y=4y+1

  7.解下列方程:

  (1)7x-6=-5x (2)-x-1=4; (3)2x+3=x-1 (4)

  8.當x為何值時,式子x-5與3x+1的和等于9?

  9.列方程并求解:

  一個兩位數,個位上的數字比十位上的數字大2,個位與十位上的數字之和是10崐,求這個兩位數(提示:設個位上的數字為x)

  10.如果方程2x+a=x-1的解是x=-4,求3a-2的值.

  參考答案(等式的性質)

  1.B 2.D 3.B

  4.(1)-8,等式性質1;(2)3x,等式性質1;(3)-,等式性質2;(4)x,等式性質2

  5.(1)都減去3,等式性質1,-3,4,都乘以-3(或除以),等式性質2,-3;(2)都加上2,等式性質1,5x,都減去3x,等式性質1,6,都除以2,等式性質2,3

  6.(1)x+3-3=2-3,x=-1,檢驗略;

  (2)-x-2+2=3+2,-x=5,x=-10;

  (3)9x-8x=8x-6-8x,x=-6;

  (4)8y-4y=4y+1-4y,4y=1,y=

  7.(1)x=;(2)x=; (3)x=-4;(4)x=15

  8.列方程x-5+3x+1=9,x=3,

  9.設個位上的數字x,列方程得x=10-x+2或x+x-2=10,x=6

  10.代x=-4入方程得-8+a=-4-1,a=3,3a-2=7

【初一數學等式的性質試題及答案參考】相關文章:

初一數學等式的性質試題及答案09-24

等式成立試題及答案09-24

小升初數學模擬試題及答案參考09-24

與數學交朋友訓練試題及答案參考09-24

數學史試題參考答案09-24

人教版數學《等式的性質》教學設計01-11

初一英語達標試題及答案參考09-24

試題挑戰及答案參考09-24

模擬試題及答案參考09-24

主站蜘蛛池模板: 精品久久久一二三区播放播放播放视频 | 国产精品无码a∨精品影院app | 黑森林福利视频导航 | 日本欧美在线视频 | 国产九九精品 | www.四虎网站| 西西人体大胆午夜视频 | 无码av免费精品一区二区三区 | 97久久久| 欧洲亚洲色一区二区色99 | 人妻聚色窝窝人体www一区 | 人妻少妇乱子伦精品 | 后进式无遮挡啪啪摇乳动态图 | 久草综合视频 | 大桥未久亚洲精品久久久强制中出 | 青娱乐国产 | 国产欧美精品aaaaaa片 | 亚洲人成电影综合网站色www | 天天爽夜夜爽国产精品视频 | 欧洲精品一区二区三区 | 九九精品99 | 亚洲综合天堂婷婷五月 | 国产成人精品午夜视频 | 欧美亚洲视频一区二区 | 中文字幕天堂中文 | 亚洲成人午夜影院 | 国产黄在线 | 精品av在线播放 | 蜜臀av国内精品久久久夜夜蜜臀 | 国产精品一区二区免费在线观看 | 日韩精品无码一本二本三本色 | 成人av片无码免费天天看 | 亚洲黄色a v | 欧美婷婷色 | www.中文av | 国产精品一区二区性色av | 成年女人永久免费 | 真实国产乱人伦在线视频播放 | 一级特黄免费视频 | av免费无码天堂在线 | 日本免费黄色网 | 18在线观看免费入口 | 密色av | 99r| 久久综合给合久久国产免费 | 中文字幕黄网 | www.色99 | 亚洲性视频在线 | 国产亚洲欧洲 | 婷婷五月六月激情综合色中文字幕 | av无码人妻一区二区三区牛牛 | 又粗又硬又大又爽免费视频播放 | 国内永久福利在线视频图片 | 精品国内自产拍在线播放观看 | 国产精品美女www爽爽爽软件 | 性日韩| 狠狠干夜夜骑 | 亚洲一区二区三区国产 | 中文字幕日韩av | 99久久免费看精品国产 | 欧美狠狠入鲁的视频 | 亚洲欧美色综合区11p | 人人九九精 | 欧洲无码一区二区三区在线观看 | www.99cao| 亚洲曰韩欧美在线看片 | 国产日韩av免费在线观看 | av爱爱| 亚洲第一页在线播放 | 国产精品久久精品国产 | 国产又粗又硬又大爽黄 | 蜜臀久久99精品久久久久久小说 | 国产成人99久久亚洲综合精品 | 日韩精品一区二区不卡 | 四虎在线永久 | 四虎精品 在线 成人 影院 | 国产欧洲色婷婷久久99精品91 | 狠狠躁18三区二区一区传媒剧情 | 中本亚洲欧美国产日韩 | 主播大秀一区二区三区 | 欧美日韩69 | 99精品视频在线导航 | 国产亚洲精品久久久久的角色 | 少妇裸体性生交 | 亚洲精品欧洲 | 男人舌头进女屁股视频免费 | 国产私拍 | 日本中文字幕一区二区有码在线 | 女女同性女同一区二区三区九色 | 人妻精品动漫h无码专区 | av在线观 | 亚洲色婷婷一区二区三区 | 好爽别插了无码视频 | 欧洲丰满少妇做爰视频爽爽 | av永久天堂一区二区三区 | 天干夜天干天天天爽视频 | 黄色片久久久久久 | 亚洲精品久久久久久无码色欲四季 | xxx.www国产|