色噜噜人体337p人体 I 超碰97观看 I 91久久香蕉国产日韩欧美9色 I 色婷婷我要去我去也 I 日本午夜a I 国产av高清怡春院 I 桃色精品 I 91香蕉国产 I 另类小说第一页 I 日操夜夜操 I 久久性色 I 日韩欧在线 I 国产深夜在线观看 I 免费的av I 18在线观看视频 I 他也色在线视频 I 亚洲熟女中文字幕男人总站 I 亚洲国产综合精品中文第一 I 人妻丰满熟av无码区hd I 新黄色网址 I 国产精品真实灌醉女在线播放 I 欧美巨大荫蒂茸毛毛人妖 I 国产一区欧美 I 欧洲亚洲1卡二卡三卡2021 I 国产亚洲欧美在线观看三区 I 97精品无人区乱码在线观看 I 欧美妇人 I 96精品在线视频 I 国产人免费视频在线观看 I 91麻豆国产福利在线观看

實用文檔>一元二次方程實數根錯例剖析的教案

一元二次方程實數根錯例剖析的教案

時間:2024-09-21 19:10:17

一元二次方程實數根錯例剖析的教案

一元二次方程實數根錯例剖析的教案

一元二次方程實數根錯例剖析的教案

  1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。

  例1 下列方程中兩實數根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯答: B

  正解:C

  錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。

  例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯解 :B

  正解:D

  錯因剖析:漏掉了方程有實數根的前提是△≥0

  例3(2000廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2x-1=0有兩個不相等的實根,求k的取值范圍。

  錯解: 由△=(-2)2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范

  圍是 -1≤k<2

  錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k=時,原方程變為一次方程,不可能有兩個實根。

  正解: -1≤k<2且k≠

  例4 (2002山東太原中考題) 已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。

  錯解:由根與系數的關系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

  =[-(2m+1)]2-2(m2+1)

  =2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數根,不符合題意。

  正解:m = 2

  例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數根,求m的取值范圍。

  錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數根,a是非負數,求方程的整數根。

  錯解:∵方程有整數根,

  ∴△=9-4a>0,則a<2。25

  又∵a是非負數,∴a=1或a=2

  令a=1,則x= -3±,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數根是x1= -1, x2= -2

  錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0, x4= -3

  正解:方程的整數根是x1= -1, x2= -2 , x3=0, x4= -3

  練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。(1)求k的取值范圍;(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。

  解:(1)根據題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當k<時,方程有兩個不相等的實數根。

 。2)存在。如果方程的兩實數根x1、x2互為相反數,則x1+ x2=-=0,

  解得k=。經檢驗k=是方程-的解。

  ∴當k=時,方程的兩實數根x1、x2互為相反數。

  讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

  解:上面解法錯在如下兩個方面:

  (1)漏掉k≠0,正確答案為:當k<時且k≠0時,方程有兩個不相等的實數根。

 。2)k=。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數

  練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根 ?

  解:(1)當a=0時,方程為4x-1=0,∴x=

  (2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

  ∴當a≥ -4且a≠0時,方程有實數根。

  又因為方程只有正實數根,設為x1,x2,則:

  x1+x2=->0 ;

  x1。 x2=->0 解得 :a<0

  綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數根。

  以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。

  1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。

  2、運用根與系數關系時,△≥0是前提條件。

  3、條件多面時(如例5、例6)考慮要周全。

  1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

  2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數根。求證:關于x的方程

 。╩-5)x2-2(m+2)x + m=0一定有一個或兩個實數根。

  考題匯編

  1、(2000年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。

  2、(2001年廣東省中考題)已知關于x的方程x2-2x+m-1=0

  (1)若方程的一個根為1,求m的值。

 。2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。

  3、(2002年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。

  4、(2003年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

  課題:一元二次方程實數根錯例剖析課

  精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。

  1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。

  例1 下列方程中兩實數根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯答: B

  正解:C

  錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。

  例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯解 :B

  正解:D

  錯因剖析:漏掉了方程有實數根的前提是△≥0

  例3(2000廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2x-1=0有兩個不相等的實根,求k的取值范圍。

  錯解: 由△=(-2)2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范

  圍是 -1≤k<2

  錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k=時,原方程變為一次方程,不可能有兩個實根。

  正解: -1≤k<2且k≠

  例4 (2002山東太原中考題) 已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。

  錯解:由根與系數的關系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

  =[-(2m+1)]2-2(m2+1)

  =2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數根,不符合題意。

  正解:m = 2

  例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數根,求m的取值范圍。

  錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數根,a是非負數,求方程的整數根。

  錯解:∵方程有整數根,

  ∴△=9-4a>0,則a<2。25

  又∵a是非負數,∴a=1或a=2

  令a=1,則x= -3±,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數根是x1= -1, x2= -2

  錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0, x4= -3

  正解:方程的整數根是x1= -1, x2= -2 , x3=0, x4= -3

  練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。(1)求k的取值范圍;(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。

  解:(1)根據題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當k<時,方程有兩個不相等的實數根。

  (2)存在。如果方程的兩實數根x1、x2互為相反數,則x1+ x2=-=0,

  解得k=。經檢驗k=是方程-的解。

  ∴當k=時,方程的兩實數根x1、x2互為相反數。

  讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

  解:上面解法錯在如下兩個方面:

 。1)漏掉k≠0,正確答案為:當k<時且k≠0時,方程有兩個不相等的實數根。

 。2)k=。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數

  練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根 ?

  解:(1)當a=0時,方程為4x-1=0,∴x=

 。2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

  ∴當a≥ -4且a≠0時,方程有實數根。

  又因為方程只有正實數根,設為x1,x2,則:

  x1+x2=->0 ;

  x1。 x2=->0 解得 :a<0

  綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數根。

  以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。

  1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。

  2、運用根與系數關系時,△≥0是前提條件。

  3、條件多面時(如例5、例6)考慮要周全。

  1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

  2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數根。求證:關于x的方程

 。╩-5)x2-2(m+2)x + m=0一定有一個或兩個實數根。

  考題匯編

  1、(2000年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。

  2、(2001年廣東省中考題)已知關于x的方程x2-2x+m-1=0

 。1)若方程的一個根為1,求m的值。

 。2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。

  3、(2002年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。

  4、(2003年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

【一元二次方程實數根錯例剖析的教案】相關文章:

一元二次方程概念的教學反思03-19

關于二次函數與一元二次方程教學反思(精選10篇)09-27

《失根的蘭花》教案設計12-18

關于旅游專業的剖析報告02-15

解一元一次方程的教案(精選11篇)12-05

解一元一次方程教案設計(精選14篇)11-16

一元一次方程及其解法復習教案(精選11篇)03-15

一元一次方程去分母教案(通用10篇)11-17

小學文明校園創建計劃樣例03-19

小學四年級語文教學20皮巧根橋教案設計03-19

用戶協議
主站蜘蛛池模板: 中文视频在线观看 | 国内毛片毛片 | 国产精品怡红院永久免费 | 成人午夜视频在线免费观看 | 国产成人vr精品a视频 | 国产日产欧美精品 | 免费av在线不卡观看 | 日韩av有码 | 综合欧美日韩国产成人 | 天天插天天操 | 国产伦孑沙发午休精品911 | 野花社区视频在线观看 | 中文字幕亚洲情99在线 | 在线亚洲综合欧美网站首页 | 国产精品成人精品久久久 | 亚洲无限乱码一二三四麻 | 在线黄色免费网站 | 天美麻花果冻视频大全英文版 | 成人女同 | 国产精品a久久久久 | 性色av一区二区三区在线观看 | 亚洲精品第一国产综合精品 | 俄罗斯大荫蒂女人毛茸茸 | 亚洲国产精品va在线观看麻豆 | 亚洲精品偷拍视频 | 欧美激情站 | 日本学生初尝黑人巨免费视频 | 免费人妻无码不卡中文字幕18禁 | 久久99精品久久久久久野外 | 国产超碰av | 国产成人综合日韩精品无码 | 午夜理论电影在线观看亚洲 | 国模冰莲自慰肥美胞极品人体图 | 99久热re在线精品99 6热视频 | 亚洲xxx在线 | 亚洲综合成人av一区在线观看 | 精品久热 | 久久久国语 | 性大片免费视频观看 | 亚洲精品欧美激情 | 年轻内射无码视频 | 中文字幕无线码 | 日韩精品国产精品 | 亚洲国产第一区 | 爱情岛论坛成人永久网站在线观看 | 东京热一区二区三区无码视频 | 国产69精品久久久久9999apgf | 污污视频在线免费看 | 色偷偷色噜噜狠狠成人免费视频 | 国产精品涩涩屋www在线观看 | wwww.国产| 宅男噜噜噜66网站在线观看 | 性色在线观看 | 久久夜色精品国产 | 摸进她的内裤里疯狂揉她动图视频 | 欧美人与动人物牲交免费观看久久 | 黄色日批视频在线观看 | 欧美国产日本在线 | 92看看福利1000集合集免费 | 性涩av| 最新无码人妻在线不卡 | 无码人妻毛片丰满熟妇区毛片国产 | 亚洲r成人av久久人人爽澳门赌 | 精品乱码无人区一区二区 | 国产又粗又长又黄又猛 | 久久久久国产精品一区 | 亚洲va欧美va人人爽午夜 | 中文字幕第一页九 | 国产无人区卡一卡二卡三网站 | 久久久久国产精品人妻aⅴ牛牛 | 蜜桃无码一区二区三区 | 成人视频在线观看 | 亚洲男人的天堂网站 | 国产在线国偷精品产拍免费观看 | 内射无套在线观看高清完整免费 | 露脸啪啪清纯大学生美女 | 中文字幕乱偷在线小说 | 国内精品九九久久久精品 | 老女人任你躁久久久久久老妇 | 91看片在线观看 | 亚洲综合伊人久久 | 亚洲乱码一区二区三区在线观看 | 亚洲成人免费在线播放 | 国产在线观看欧美 | 国产九一视频 | 熟透的岳跟岳弄了69视频 | 韩国三级中文字幕hd久久精品 | 久久久中文字幕av | 夜夜添狠狠添高潮出水 | 久久与欧美 | 性欧美18一19性猛交 | 暖暖 在线 日本 免费 中文 | 狠狠色狠色综合曰曰 | 爱爱网站在线 | av看片网站 | 青青av在线 | 久久诱惑 | 法国伦理少妇愉情 | 中文日产幕无线码6区收藏 性中国古装v |